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Outline of the talk

• Logic in student-constructed proofs

• A question

• A “chunk-by-chunk” analysis of student proofs

• An answer

• Logic-like structures

• Observing mathematicians proving alone

• New data collection technique

• Impasses – “getting stuck”

• Incubation

• Future research
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How much logic is in student proofs?

• Often university mathematics departments 

teach some formal logic early in a transition-

to-proof course in preparation for teaching 

undergraduate students to construct proofs.

• There are some that believe that formal 

logic should be taught first, separately (Epp, 

2003) and some that believe that logic need 

not be explicitly taught at all (Hanna & de 

Villiers, 2008).
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How much logic is in student proofs? (cont.)

• One aim of the study was to find the logic beyond 

common sense in student-constructed proofs so 

that the question of how it should be taught can be 

better understood.

• If formal logic occurs quite a bit, then teaching a 

unit on predicate and propositional calculus first 

might be a good idea. However, if formal logic is 

infrequent, then teaching logic in context, while 

teaching proving, might be more effective.
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The setting
• The proofs come from an “Understanding and 

Constructing Proofs” course at a large 
southwestern university.
• This course was for advanced undergraduates and 

beginning graduates.

• There were 42 theorems covering sets, functions, 
real analysis, algebra, and topology.

• Students constructed proofs at home, 
presented their proofs on the blackboard, and 
these were discussed.

• For each theorem, one proof was approved by 
the professor and copies were given to 
everyone in the class.
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The coding

• In this study, I coded all the student-

constructed proofs of theorems using a 

“chunk-by-chunk” analysis.

• There were several iterations of the coding 

process during which the categories of 

chunks emerged.

• One iteration included having two 

mathematics professors coding several 

theorems and meeting twice to discuss the 

coding.
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Chunk-by-chunk analysis

• The “chunks” are somewhat similar to those used in 

analyzing short-term memory (Miller, 1956). They 

are small phrases that can be taken together as a 

“meaningful unit” in thinking.

• Some chunks can be sentences, others can be one 

or a couple of words, but they are always meant to 

refer to a moment or unit in the proof.

• The two professors and I were in agreement on 

over 80% of the chunks in 4 proofs during one 

chunking iteration.
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Example of a chunk-by-chunk analysis

8

Theorem 3: For sets 𝐴, 𝐵, and 𝐶, if 𝐴 ⊆ 𝐵 then 𝐶 − 𝐵 ⊆ 𝐶 − 𝐴.

Proof: Let 𝐴, 𝐵, and 𝐶 be sets such that 𝐴 ⊆ 𝐵. Suppose 𝑥 ∈ 𝐶 − 𝐵. 
Then 𝑥 ∈ 𝐶 and 𝑥 ∉ 𝐵. By 𝐴 ⊆ 𝐵 we have 𝑥 ∉ 𝐴; hence 𝑥 ∈ 𝐶 − 𝐴. 
Therefore, 𝐶 − 𝐵 ⊆ 𝐶 − 𝐴.

1. Let 𝐴, 𝐵, and 𝐶 be sets 
2. such that 𝐴 ⊆ 𝐵. 
3. Suppose 𝑥 ∈ 𝐶 − 𝐵. 
4. Then 𝑥 ∈ 𝐶 and 𝑥 ∉ 𝐵. 
5. By 𝐴 ⊆ 𝐵
6. we have 𝑥 ∉ 𝐴; 
7. hence 𝑥 ∈ 𝐶 − 𝐴. 
8. Therefore, 𝐶 − 𝐵 ⊆ 𝐶 − 𝐴.



The categories

• During the coding of the chunks, 13 categories 

emerged.

• I will describe five of the categories; two about 

logic and the three that occurred most often.
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Five of the categories

• Informal Inference (common sense) (II)

• Can be made without bringing to mind formal logic (by 

students at the beginning of a transition-to-proof course)

• A common example is modus ponens

• Formal Logic (FL)

• Inference requiring predicate or propositional calculus of 

the kind taught in a transition-to-proof course, and not 

informal inference

• Beginning transition-to-proof students might not know this 

“formal logic” 

• An example would be: if 𝑥 ∉ 𝐵 ∪ 𝐶, then 𝑥 ∉ 𝐵 and 𝑥 ∉ 𝐶

10



Five of the categories (cont.)

• Definition (DEF)
• The chunk is immediately derived from the definition

• Assumption (A)
• Introducing a mathematical object or assuming 

properties of the object

• Two Sub-categories 
• Example: For the theorem “For all 𝑛 ∈ ℕ, if 𝑛 > 5 then 
𝑛2 > 25.”

– Choice (A-C): “Let 𝑛 ∈ ℕ” 

– Hypothesis (A-H): “Suppose 𝑛 > 5"

• Interior Reference (IR)
• Referring to a chunk or chunks stated earlier in the 

proof
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Example

• Theorem 38: If 𝑋 is a Hausdorff space and 𝑥 ∈ 𝑋, 
then {𝑥} is closed.

• Proof: Let 𝑋 be a Hausdorff space. Let 𝑥 ∈ 𝑋. Note 
𝑥 = 𝑋 − (𝑋 − 𝑥 ). Suppose 𝑦 ∈ 𝑋 and 𝑦 ≠ 𝑥. 

Because 𝑋 is Hausdorff, there is an open set 𝑃𝑦 for 
which 𝑦 ∈ 𝑃𝑦. There is also an open set 𝑅𝑦 such that 
𝑥 ∈ 𝑅𝑦 and 𝑃𝑦 ∩ 𝑅𝑦 = ∅. Suppose 𝑃𝑦 ⊈ 𝑋 − {𝑥}, then 
𝑥 ∈ 𝑃𝑦, but 𝑥 ∈ 𝑅𝑦. Therefore 𝑥 ∈ 𝑃𝑦 ∩ 𝑅𝑦, which is a 
contradiction. Therefore, 𝑃𝑦 ⊆ 𝑋 − {𝑥}. Thus for 
every 𝑦 ≠ 𝑥 there is an open set 𝑃𝑦 where 𝑦 ∈ 𝑃𝑦
and 𝑃𝑦 ⊆ 𝑋 − {𝑥}. The union of all 𝑃𝑦 is equal to 𝑋 −
{𝑥}, which is thus an open set. Therefore {𝑥} is 
closed, being the complement of an open set.
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Example (cont.)

Let 𝑋 be a Hausdorff space. Assumption (Hypothesis)

Let 𝑥 ∈ 𝑋. Assumption (Hypothesis)

Note 𝑥 = 𝑋 − (𝑋 − 𝑥 ). Formal Logic

Suppose 𝑦 ∈ 𝑋 and 𝑦 ≠ 𝑥. Assumption (Choice)

Because 𝑋 is Hausdorff, Interior reference

there is an open set 𝑃𝑦 for which 𝑦 ∈ 𝑃𝑦. There is also an 

open set 𝑅𝑦 such that 𝑥 ∈ 𝑅𝑦 and 𝑃𝑦 ∩ 𝑅𝑦 = ∅.

Definition of Hausdorff

Suppose 𝑃𝑦 ⊈ 𝑋 − {𝑥}, Assumption (Hypothesis)

then 𝑥 ∈ 𝑃𝑦, Informal inference

but 𝑥 ∈ 𝑅𝑦. Interior reference

Therefore 𝑥 ∈ 𝑃𝑦 ∩ 𝑅𝑦, Definition of intersection

which is a contradiction. Contradiction statement
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Example (cont.)

Therefore, 𝑃𝑦 ⊆ 𝑋 − {𝑥}. Informal Inference

Thus for every 𝑦 ≠ 𝑥 there is an open set 𝑃𝑦 where 𝑦 ∈

𝑃𝑦 and 𝑃𝑦 ⊆ 𝑋 − {𝑥}.

Conclusion statement

The union of all 𝑃𝑦 is equal to 𝑋 − {𝑥}, Formal Logic

which is thus an open set. Definition of topology

Therefore {𝑥} is closed, being the complement of an 

open set.

Conclusion 

statement/Definition of 

closed
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Results

• In the 42 proofs, consisting of 673 chunks, 

formal logic (FL) constituted 1.9% of the 

chunks (13 chunks), while informal 

inference (II) was 6.5% (or 44 chunks).

• Definition (DEF): 30% of the proof chunks (or 203 chunks)

• Assumption (A): 25% of the proof chunks (166 chunks)

• Interior reference (IR): 16% of the proof chunks (108 chunks)
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Why such a small percentage of formal 

logic?

• The course was intended to cover a wide 

variety of kinds of proofs, causing many of 

the proofs to be based mainly on definitions.

• The coding did not consider the implicit

logical actions in the proving process or in 

the structuring of proofs.
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Homology Class
• In Fall 2010, I took a Homology course and chose 

to code 10 proofs using the same categories.

• The proofs were from another student in the class 

who got a perfect score on all homework.

• I found that less than 1% of the 170 chunks could 

be coded as formal logic (FL), while informal 

inference (II) had 10%.

• Definition (DEF), assumption (A), and interior 

reference (IR) were the three highest percentages 

(21% vs. 30%, 18% vs. 24% and 17% vs. 16% 

respectively).

17



An answer
• From this study, one can see that there were few 

instances of formal logic (predicate or propositional 

calculus that are not common sense). This indicates 

that it may be more beneficial to teach logic while 

teaching proving.

• There are many instances in a proof where logic is 

being used implicitly (such as using a definition), 

and there are truth-preserving structures in proofs. 

These structures were not counted in this coding 

because they entail a global view.
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Logic-like structures
• A logic-like structure preserves truth value in an 

argument, yet is not in the language of predicate or 

propositional calculus.

• For example, if one sees a situation where the 

theorem states “For all 𝑥 ∈ 𝐴, 𝑃(𝑥)”, one starts with 

“Let 𝑥 ∈ 𝐴.” and reasons to “𝑃(𝑥)”

• Another example would be to prove there is a 

unique 𝑥 so that 𝑃(𝑥), one starts with “Suppose 

𝑃 𝑎 and 𝑃(𝑏)” and reasons to “𝑎 = 𝑏”. This logic-

like structure shows up in proving that an identity is 

unique in a semigroup.
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Examining students’ approaches to logic-like 

structures
• I videoed and interviewed 3 students from the 

“proofs” class one year later.

• 45 minutes were focused on the uninterrupted, 
think-aloud production of the proof, followed by 
15 minutes of follow-up interview.

• One page of notes was given to the students 
starting with the definition of semigroup and 
supplying all information needed to prove the 
theorem.

• The theorem: Every semigroup has at most one 
minimal ideal.
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Results

• No one finished the proof correctly after 45 

min. One student finished, but with some 

gaps in her proof.

• Every student immediately considered a 

semigroup 𝑆, and all approached the proof 

by assuming two, or 𝑛, minimal ideals.

• After this, each student proved the theorem 

differently, but that did not mean more logic 

was used.
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Motivation and Questions

• These 3 students should have been able to 

prove the theorem but could not in the 45 

minute interview.

• All 3 “got stuck” during the interview.

• How can people be observed constructing 

proofs alone (with unlimited time)?

• Do mathematicians “get stuck” and how do 

they get “un-stuck?”
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Background Literature

• Mathematicians’ knowledge
• Actions during proof validations (Weber, 2008)

• Mathematicians’ learning (Burton, 1999; 
Wilkerson-Jerde & Wilensky, 2011)

• Using diagrams to construct proofs (Samkoff, 
Lai, & Weber, 2011)

• Students’ proving
• Difficulties (Moore, 1994; Weber & Alcock, 2004)

• Validations of proofs (Selden & Selden, 2003)

• Comprehension of proofs (Conradie & Frith, 
2000; Mejia-Ramos, et al., 2010)
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Impasses

• Impasse – A period of time when a prover 

feels or recognizes the argument is not 

progressing and he or she has no new ideas

• Also known as “getting stuck” or “spinning one’s 

wheels”

• Different from an impasse defined for automated 

computer provers (Meier & Melis, 2005)

• Two kinds of actions to recover from an 

impasse

• Mathematical or non-mathematical
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Incubation
• Incubation – a period of time, following a 

proof attempt, during which similar activity 
does not occur

• The second stage of the 4 stages of 
creativity (Wallas, 1926)
• Preparation, Incubation, Illumination, Verification

• Poincare, Hadamard, and other 
mathematicians have described a period of 
incubation, followed by an “insight”

• Apparently should have interest in finding 
the solution for incubation to have any effect
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Participants and Tasks

• Nine research mathematicians (3 

algebraists, 2 analysts, 3 topologists, 1 

logician)

• Tasks – prove theorems in notes on 

semigroups (10 definitions, 13 theorems, 7 

example requests, and 4 questions)

• Chosen for two reasons

• Material (I hoped) was unfamiliar but accessible

• Last two theorems require non-obvious lemmas 

and were difficult for students
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Data Collection
• Electronically:

• The first  four mathematicians proved on a tablet PC, set-

up with CamStudio (screen-capturing software) and 

OneNote (space for their writing).

• The final five mathematicians proved with a LiveScribe pen 

and special paper, capable of recording audio and writing 

in real-time.

• Both had date and time stamps for each writing 

session

• Advantages:

• Used at the participant’s leisure

• Real-time recording of the proving process

• Never done before
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Example of Tablet PC
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Example of LiveScribe pen
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Data Collection, cont.

• Each mathematician kept the equipment for 2-7 
days.

• I analyzed the screen captures and the proof 
attempts.

• One or two days later, I interviewed the 
mathematicians about their proofs and their proving 
attempts.

• I also had two videoed “focus group” sessions: one 
for the tablet participants, the other for the 
LiveScribe pen participants. 

• Two mathematicians volunteered the choice of 
semigroups was judicious:
• Grasp concepts quickly

• At least one of the theorems was challenging to prove
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Summary Data

• 4 of the 9 professors had problems with the 

equipment, and thus did not produce “live” data

• 6 of the 9 professors had impasses with at least 

one of the last two theorems

• Average time of a professor’s work on the 

technology: 2 hours, 5 minutes

• Average time from first technology time stamp 

until the last: 19 hours, 56 minutes

• Average amount of pages written: Around 13
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Dr. A

• Applied analyst

• Encountered impasse with the final theorem 

in the notes: “If 𝑆 is a commutative 

semigroup with minimal ideal 𝐾, then 𝐾 is a 

group.”

• Done on a tablet PC

• Total time: 22 hours, 17 minutes (July 13, 

2:44 PM - July 14, 1:01 PM)
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Proving Process of Dr. A, Day 1

• 3:48 PM Attempted a proof of Theorem 21 

by contradiction

• 3:54 PM Moved on to the final part of the 

notes containing a request for examples

• 4:05 PM Scrolled on the screen back up to 

view his first proof attempt, which he then 

erased.

• 4:12 PM Attempted the proof again
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Proving Process of Dr. A, Day 2

• Next screen capture at 11:07 AM of Day 2.

• Used mappings and inverse mappings of 

elements

• “I don’t know how to prove that 𝐾 itself is a 

group.”

• After a 30-minute gap, he proved the 

theorem successfully.
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Dr. A’s Exit Interview

• Dr. A acknowledged his impasse:

• “One has to show there aren't any sub-ideals of 

the minimal ideal itself, considered as a 

semigroup, and that's where I got a little bit 

stuck.”

• Dr. A gets out of this impasse (consciously) 

by walking around and doing his 

departmental duties.
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Dr. B
• Algebraist

• Encountered impasse with the penultimate 
theorem in the notes: “If 𝑆 is a commutative 
semigroup with no proper ideals, then 𝑆 is a 
group.”

• Done on a tablet PC

• Did not get any screen captures due to 
failure with software

• Total time: 5 hours, 40 minutes (August 3, 
7:25 AM – August 3, 1:05 PM)
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Proving Process of Dr. B
• Dr. B wrote: “Stuck on [theorem] 20. It seems 

you need 1 ∈ 𝑆 [in the hypothesis], but I can't 

find a counterexample to show this.”

• Moved on to the next theorem, which he proved 

correctly, but then struck out his work.

• Then Dr. B went to the final question dealing 

with examples of isomorphisms of semigroups.

• Dr. B was interrupted to go to lunch.

• After lunch, Dr. B proved both theorems 

correctly.
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Dr. B’s Exit Interview

• Dr. B stated that he had created a property 

that had confused him, and thought that he 

needed to assume that there was an 

identity.

• “I probably spent 30 minutes to an hour trying to 

come up with a crazy example.”

• He said he got out of his impasse by going 

to lunch with his family, noting that he would 

have worked on the problem continuously if 

not for the lunch.
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Actions to Overcome Impasses

• Viewing the impasses, the action to 

overcome utilizes mathematical actions or 

does not

• Hence, the actions are separated into two 

categories:

• Mathematical

• Non-mathematical

• All the actions to overcome impasses are 

accompanied by exit interview quotes from 

professors supporting the action
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Mathematical Actions
• Using methods that occurred earlier in the 

session
• “It would be fairly easy to prove…it’s likely an 

argument, kind of like the one I already used…” 
(Dr. H)

• Using prior knowledge from their own 
research
• “I'm trying to think if there's anything in the work 

that I do that...I mean some of the stuff I've done 
about subspaces of 𝐿2(ℝ), umm...there are 
things called principal shift invariance spaces 
that the word principal comes into play.” (Dr. A)
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Mathematical Actions, cont.
• Using a database of proving techniques

• “Your brain is randomly running through 
arguments you’ve seen in the past… standard 
techniques that keep running through my head, 
sort of like downloading a whole bunch at the 
same time and figuring out which way to go.” (Dr. 
F)

• Doing other problems and coming back to 
their impasse
• “I moved on because I was stuck...maybe I was 

going to use one of those examples...I might get 
more information by going ahead.” (Dr. B)
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Mathematical Actions, cont.

• Doing other mathematics

• “What I try to do is to keep three projects 

going…I make them in different areas and 

different difficulty levels…” (Dr. E)
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Non-Mathematical Actions

• Walking

• “When I’m stuck, I often feel like taking a break. And 

indeed, you come back later and certainly for a 

mathematician you go off on a walk and you think 

about it.” (Dr. G)

• Watch TV

• “Yeah I’ll do something else, and I’ll just do it, and if 

there’s a spot where I get stuck or something, I’ll put it 

down and I’ll watch TV, I’ll watch the football game, or 

whatever it is, and then at the commercial I’ll think 

about it and say yeah that’ll work…” (Dr. E)
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Non-mathematical Actions, cont.
• Going to lunch/eating

• “So I had spent probably the last 30 min to an hour 
on that time period working on number 20 going in 
the wrong direction. Ok, so I went to lunch, came 
back, and while I was at lunch, I wasn’t writing or 
doing things, but I was just standing in line 
somewhere and it occurred to me 
the…(laughs)…how to solve the problem.” (Dr. B)

• Waking up
• “It often comes to me in the shower…you know you 

wake up, and your brain starts working and somehow 
it just comes to me. I’ve definitely gotten a lot of ideas 
just waking up and saying “That’s how I’m going to 
do this problem.” (Dr. F)
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Why is incubation important?
• Dr. G, from the focus group session: “When we are 

working on something, we are usually scribbling down 

on paper. When you go take a break,… you are thinking 

about it in your head without any visual aides….[walking 

around] forces me to think about it from a different point 

of view, and try different ways of thinking about it, often 

global, structural points of view.”

• Dr. F: “You just come back with a fresh mind. You’re 

zoomed in too much and you can’t see anything around 

it anymore.”

• Dr. A: “I do have a belief that if I walk away from 

something and come back it’s more likely that I’ll have 

an idea than if I just sit there.”
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Discussion
• Educators want their students to have that “Eureka” 

or “AHA!” moment (Liljedahl, 2004)

• Incubation is important to mathematicians, so how 
can we show this effect to our students?

• One way might be to introduce “good” problems 
that require a good amount of thought.

• Schoenfeld (1982) described a “good” problem:
• The problem needs to be accessible. That is, it is easily 

understood, and does not require specific knowledge to 
get into. 

• The problem can be approached from a number of 
different ways. 

• The problem should serve as an introduction to important 
mathematical ideas. 

• The problem should serve as a starting point for rich 
mathematical exploration and lead to more good problems. 

46



Other Observations

• Two of the mathematicians misread the last 

theorem, “If 𝑆 is a commutative semigroup, 

and 𝐾 is a minimal ideal, then 𝐾 is a group.”

• Both emailed me after I had mentioned the 

misreading and sketched a proof in the email

• 3 professors looked for counter-examples of 

some theorems, noting that at first they 

seemed to be false claims
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Future research

• Currently, I am in the first stages of finding 

the differences and similarities between 

other mathematics topics in order to better 

assist transition-to-proof courses.

• I would like to expand on how behavioral 

knowledge of logic-like structures helps to 

reduce the burden on working memory.

• I’ve had several professors ask me to code 

the proofs in a chapter of a textbook to see 

how much formal logic occurs in the proofs.
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Future research (cont.)

• I would like to compare undergraduate and 

graduate students’ data to that of the 

mathematicians in the proving process

• I would also like to use the data collection 

technique to help students’ proving 

approaches

• Akin to sports’ “film sessions”

• May also use a problem-solving framework so 

that students explicitly actions such as validation

• May be helpful in transition-to-proof or other 

proof-based courses
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